

Gravity-Field Determination from Laser Observations [and Discussion]

E. M. Gaposchkin and J. A. Weightman

Phil. Trans. R. Soc. Lond. A 1977 **284**, 515-527 doi: 10.1098/rsta.1977.0027

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click **here**

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

Phil. Trans. R. Soc. Lond. A. **284**, 515–527 (1977) [515] Printed in Great Britain

Gravity-field determination from laser observations

BY E. M. GAPOSCHKIN

Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138, U.S.A.

Knowledge of long-wavelength features of the geopotential is significantly improved by the use of precision satellite tracking with lasers. Tracking data on nine satellites are combined with terrestrial gravimetry to obtain a spherical-harmonics representation of the geopotential complete through degree and order 24. An improved gravity-field model provides better satellite ephemerides and a reference for analysing satellite-tosea-surface altimetry.

1. INTRODUCTION

Satellite-tracking data have been successfully used for many years in the determination of fundamental geodetic parameters, including both the geopotential and geocentric station coordinates (see, for example, Mueller 1974; Anderle 1974; Gaposchkin 1974; Schmid 1974; Smith *et al.* 1975). All these analyses have relied mostly on data with an accuracy of only 10 m or poorer. Nevertheless, results have been obtained with an inherent accuracy of better than 5 m. More precise data are now becoming available in sufficient quantity to allow a redetermination of these fundamental geodetic parameters with improved accuracy. These data are coming from pulsed ranging lasers that track satellites equipped with reflecting cube-corner arrays. Data now being analysed apparently have an accuracy of better than 10 cm, which will lead to a 100-fold improvement in our knowledge of geodetic parameters and other geophysical quantities.

The objective of this work is to obtain a global representation of the geopotential in spherical harmonics with sufficient detail to determine both a satellite trajectory and the geocentric coordinates of all the tracking stations in a well-defined coordinate system to an accuracy of a few centimetres or better. Both objectives are achieved by analysing satellite-tracking laser data in combination with other data. The global nature of the analysis requires coordinated observations from stations in a worldwide network.

Since the data are acquired by several agencies operating in concert, those chosen for analysis are taken from periods of cooperative tracking programs covering several years. This results in an inhomogeneous data set with variable accuracy. Finally, laser tracking data, no matter how accurate, cannot give a uniform description of the gravity field expressed in spherical harmonics, nor can they provide a well-defined reference frame. Therefore, for the moment, terrestrial gravimetry and simultaneous camera observations are also used.

In parallel with the increased accuracy of tracking data, improvements in the treatment of the orbital-perturbation theory and geophysical phenomena have been realized. For example, the inclination function for tesseral-harmonics perturbations as formulated by Kaula (1966) computationally loses accuracy for high degrees and has been replaced by the equivalent formula derived from group theory (Gaposchkin 1973). The interaction between J_2 and resonant harmonics has likewise been improved. Lunar and solar perturbations, body tides, and ocean tides have been computed to the necessary accuracy (Kozai 1973). Perturbations arising from the non-inertialness of the adopted coordinate system have been corrected and improved (Kinoshita 1975, 1976), and those due to direct solar radiation pressure (Aksnes 1976), albedo

59

Vol. 284. A.

516

E. M. GAPOSCHKIN

pressure (Lautman 1976 a, b), and infrared radiation (Lautman 1976 c) have all been included and tested (Gaposchkin, Latimer & Mendes 1975). Particular attention has been paid to the relation between the semimajor axis a and the mean motion n-i.e. the modified Kepler third law – because laser data are a direct materialization of scale. Eventually, when other errors are reduced, laser data will be used to determine GM from observations of n and a. For the moment, we adopt the value of GM from Esposito & Ng (1975) (see table 1) and pay particular attention to possible distortions due to inadequate modelling of Kepler's third law or to an error in the adopted value of GM.

TABLE 1. CONSTANTS USED IN ORBITAL COMPUTATIONS

```
GM = 3.986005 \times 10^{14} \text{ m}^3 \text{ s}^{-2}
```

 $c = 2.997925 \times 10^8 \text{ m s}^{-1} = \text{speed of light}$

- $k_2 = 0.29 =$ Love's number for solar and lunar body tides
- $k'_2 = -0.30$
- $k_4^7 = -0.13$ $k_6^r = -0.09$

 $\kappa_6 = -0.05$ $\epsilon_2 = 0^\circ = \text{phase lag of tide}$

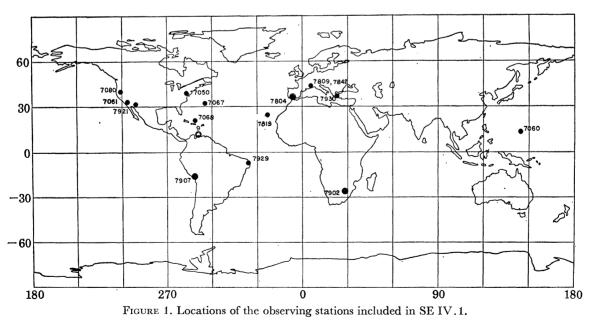
l	m	amplitude	phase
2	2	4.4 cm	-30°
4	2	1.2 cm	-167°
6	2	0.08 cm	97°
		S2 ocean tide	
l	т	amplitude	phase
2	2	2.0 cm	-30°
4	2	$0.5~\mathrm{cm}$	-167°
6	2	$0.04~\mathrm{cm}$	97°

 $a_{\rm e} = 6.378140 \text{ Mm}$ $\alpha = 0.32 = \text{Earth's albedo}$

	A m
satellite	$\overline{\mathrm{cm}^2\mathrm{g}^{-1}}$
7010901	0.20
6701401	0.30
6701101	0.30
6503201	0.13
7501001	0.009
6508901	0.10
7502701	0.04
6800201	0.06
6406401	0.10

The basic constants adopted for the orbit computation are given in table 1. The values of GM and c define the scale of the orbit and the terrestrial system. An improved value of

 $c = 2.997\,924\,58 \times 10^8\,\mathrm{m\,s^{-1}}$


will be used in future analysis. In fact, this improved value is consistent with the adopted value of GM, but the one part per 7 million scale distortion introduced with the adopted value is much smaller than other errors at this time. For the final orbital results reported here, the periodic perturbations due to body tides and ocean tides are computed from the coefficients in table 1.

The area-to-mass ratios (A/m) used for computation of solar radiation pressure and albedo perturbations have been empirically determined from analysis of long-term variations of mean orbital elements, principally the eccentricity and the semimajor axis. As indicated, all these parameters (except c) will be revised by laser tracking data. The zonal harmonics are held fixed at the values given in Gaposchkin (1973).

Generally speaking, the mathematical treatment of orbital perturbations is a complicated and subtle business, and a continuing effort is needed. The benefits of analytical treatment in terms of insight and efficiency are manifest.

	station		data-ac	quisition ca	mpaign
number	location	operating agency	ISAGEX 1971	EPSOC/ SAFE 1972–74	Geos 3 1975
7902	Olifantsfontein, S. Africa	SAO	×	×	×
7907	Arequipa, Peru	SAO	×	×	×
7921	Mt Hopkins, Arizona	SAO	×	×	×
7929	Natal, Brazil	SAO	×	×	×
7930, 7940	Athens, Greece	SAO	×	×	×
7050, 7063	GSFC, Maryland	NASA	×	×	×
7060	Guam Island	NASA	×		
7061	San Diego, California	NASA		×	•
7080	Quincy, California	NASA	•	×	
7067	Bermuda Island	NASA			×
7068	Grand Turk Island	NASA	•		×
7804	San Fernando, Spain	CNES	×		
7809	Haute Provence, France	CNES	×	•	•
7819	Grand Canary Island	CNES	•		×
7842	Grasse, France	CNES	•		×

TABLE 2. LASER STATIONS USED IN THIS ANALYSIS

E. M. GAPOSCHKIN

2. DATA USED

The laser range data have been provided by the laser networks of the Smithsonian Astrophysical Observatory (SAO), the National Aeronautics and Space Administration's Goddard Space Flight Center (NASA/GSFC), and the Centre National d'Etudes Spatiales (CNES). These data have been acquired from the stations listed in table 2 and plotted in figure 1. The accuracy has improved from 5 m in 1971 to 5 cm for some data taken in 1975 (Gaposchkin 1974; Pearlman, Lehr, Lanham & Wohn 1975). The data are used with given *a priori* weights established from discussions with the originating agencies. The nine satellites for this analysis are given in table 3, together with their orbital characteristics. The terrestrial gravimetry data employed in this solution, when averaged to $550 \text{ km} \times 550 \text{ km}$ area means, cover 86 % of the globe. The distribution of $1^{\circ} \times 1^{\circ}$ area means used is shown in figure 2. The accuracy of the gravity anomalies is discussed in Williamson & Gaposchkin (1973, 1975). The simultaneous camera data and the Deep Space Net (DSN) data used to orient the coordinate reference system are described in Gaposchkin, Latimer & Veis (1973) and Gaposchkin (1974).

TABLE 3. SUMMARY OF DYNAMICAL DATA

satellit	te	inclination		perigee height	а	number of arcs								
designation	name	(deg)	eccentricity	km	$\overline{\mathrm{km}}$	SE IV.1	SE IV.2	SE IV.3						
6406401	BE-B	80	0.012	912	7362	2	2	2						
6503201	BE-C	41	0.026	941	7311	9	9	16						
6508901	Geos 1	59	0.073	1121	8074	14	14	19						
670110 1	D1C	40	0.052	579	7336	2	2	2						
6701401	D1D	39	0.053	569	7337	3	3	3						
6800201	Geos 2	105	0.031	1101	7709	8	8	13						
7010901	Peole	15	0.017	635	7070	5	5	5						
7501001	Starlette	50	0.0207	805	7335	5	5	5						
7502701	Geos 3	115	0.0005	840	7222		4	6						
					tota	1 48	52	71						

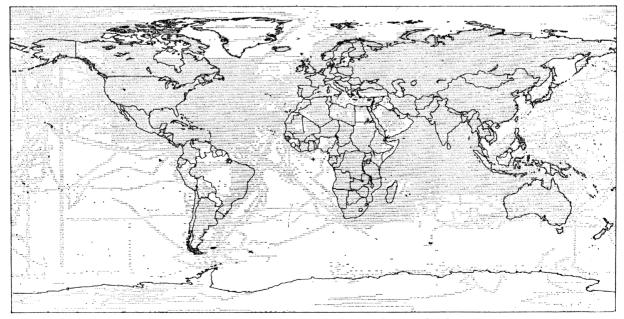


FIGURE 2. Distribution of $1^{\circ} \times 1^{\circ}$ mean surface-gravity data.

3. GRAVITY-FIELD DETERMINATION

The basic approach to the determination of the gravity field through analysis or orbital perturbations is given in Gaposchkin (1973). The essential points are three in number:

(1) The satellite acts as a filter, selecting certain combinations of spherical harmonics and transforming the spatial variation of the gravity field into a periodic temporal variation in satellite position; that is, only a subset of the coefficients can be determined, and each satellite provides a unique set of frequencies.

(2) The sensitivity of a satellite decreases with degree and order. Therefore, a satellite provides the most accurate information for lower degree coefficients.

(3) To obtain a proper separation of the spherical-harmonics coefficients, a variety of orbital characteristics is necessary.

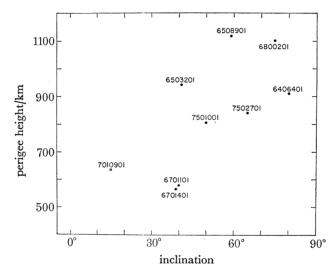


FIGURE 3. Distribution of perigee heights and inclinations of the satellites used in SE IV.1.

Therefore, terrestrial gravity data are used to provide information for weakly or undetermined coefficients, and a variety of satellite inclinations are chosen. The distribution of satellite inclinations is illustrated in figure 3.

From these nine satellites, 296 coefficients have been determined out of the complete 24thdegree-and-order field. The orbital data are chosen to give a distribution in inclination and height and an orbital arc length that covers at least one complete oscillation of the tesseral resonance. The orbital arcs chosen are between 10 and 20 days in length, depending also on the actual distribution of the tracking data.

The solution presented here is an update from the 1973 Smithsonian Standard Earth (III) (SE III) (Gaposchkin 1973). In this nonlinear iterative process, three iterations have been completed. The first is discussed by Gaposchkin & Williamson (1975) and the second by Gaposchkin (1975). This third iteration has been computed complete through degree and order 24 and is listed in table 4. The gravity anomalies derived from these coefficients are plotted in figure 4. The tracking data were given a weight as described above, and the surface-gravity data were given a variance of $144 \langle 4 \rangle$

$$\sigma^2 = \frac{144}{n} \frac{\langle A \rangle}{A} \,\mathrm{mGal^2},$$

520

E. M. GAPOSCHKIN

where *n* is the number of $1^{\circ} \times 1^{\circ}$ squares in each $5^{\circ} \times 5^{\circ}$ mean, *A* is the area of the gravity anomaly, and $\langle A \rangle$ is the average area. For unobserved areas, an estimate of $\Delta g = 0$ with a variance of $\sigma^2 = 144 \langle A \rangle / A$ was used.

Three tests of the gravity field have been performed:

- (1) Comparison of surface-gravity data.
- (2) Comparison of satellite orbital residuals.
- (3) Comparison with satellite-to-sea-surface radar altimeter data.

Assuming the solution is statistically independent of the surface-gravity data, which is not strictly true, the following quantities defined by Kaula (1966) can be computed and used to compare a geopotential model (g_s) with observed values of surface gravity (g_t) :

- $\langle g_t^2 \rangle$ The mean value of g_t^2 , where g_t is the mean free-air gravity anomaly based on surface gravity, indicating the amount of information contained in the surface-gravity anomalies.
- $\langle g_s^2 \rangle$ The mean value of g_s^2 , where g_s is the mean free-air gravity anomaly computed from the geopotential model, indicating the amount of information in the computed gravity anomalies.
- $\langle g_t g_s \rangle$ An estimate of g_t -i.e. the true value of the contribution to the gravity anomaly of the geopotential model and the amount of information common to both g_t and g_s .

 $\langle (g_t - g_s)^2 \rangle$ The mean square difference of g_t and g_s .

- $E(\epsilon_s^2)$ The mean square error in the geopotential model.
- $E(\epsilon_t^2)$ The mean square error of the observed gravity.
- $E(\delta g^2)$ The mean square of the error of omission that is, the difference between true gravity and g_h ; this term is then the model error.

If the geopotential model were perfect, then $\langle g_s^2 \rangle = \langle g_t^2 \rangle$, which in turn would equal $\langle g_t g_s \rangle$ if g_t were free from error and known everywhere. Then, e_s^2 would be zero even though g_s would not contain all the information necessary to describe the total field. The information not contained in the model field – i.e. the error of omission, δg – then consists of the higher order coefficients. The quantity $\langle (g_t - g_s)^2 \rangle$ is a measure of the agreement between the two estimates g_t and g_s and is equal to $\frac{\langle (g_t - g_s)^2 \rangle}{\langle (g_t - g_s)^2 \rangle} = E(e^2) + E(\delta g^2)$

$$\langle (g_t - g_s)^2 \rangle = E(\epsilon_s^2) + E(\epsilon_t^2) + E(\delta g^2).$$

Another estimate of g_t can be obtained from the gravimetric estimates of degree variance σ_l^2 (Kaula 1966):

$$E(g_t^2) = D = \sum_l \frac{n_l}{2l+1} \sigma_l^2,$$

where n_l is the number of coefficients of degree l included in g_h , and

$$\begin{split} \sigma_l^2 &= \gamma^2 (l-1)^2 \sum_m \big(\bar{C}_{lm}^2 + \bar{S}_{lm}^2 \big) . \\ E(e_{\rm s}^2) &= \left\langle g_{\rm s}^2 \right\rangle = \left\langle g_{\rm s} g_{\rm t} \right\rangle \\ E(e_{\rm t}^2) &= \left\langle g_{\rm t}^2 \right\rangle / \langle n \rangle . \end{split}$$

We also have

and

These values are given in table 5 for SE III; for the first iteration, SE IV. 1, which includes terms to 18th degree; for SE IV. 1 extended to 24th degree, SE IV. 1ex; for a second iteration, SE IV. 2; and for the solution reported here, SE IV. 3. The information content of the surfacegravity-data solution $\langle g_t^2 \rangle$ has increased in the revised set of gravity anomalies used here. This is

MATHEMATICAL, PHYSICAL & ENGINEERING

TRANSACTIONS SOCIETY

reasonable; since the unobserved areas have an expected value of zero, the fewer observations there are, the lower the variance is. However, the information in the 18th-degree satellite solution $\langle g_s^2 \rangle$ has decreased, a fact confirmed by a decrease in D. Therefore, the information in SE III was too high. The residual $\langle (g_t - g_s)^2 \rangle$ has remained roughly the same, while the information in the higher harmonics is estimated to be larger. The estimate of $E(\epsilon_s^2)$ cannot be reliable, as the sets of data g_s and g_t are not independent.

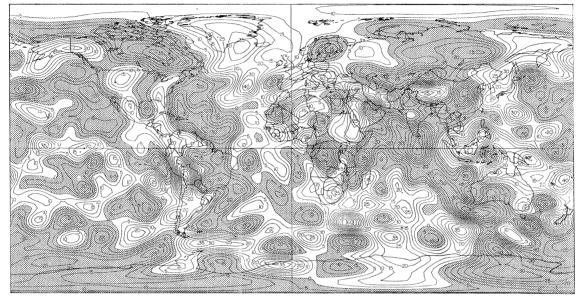


FIGURE 4. Gravity-anomaly plot from SE IV.3 for $l, m \le 24$, for a best-fitting ellipsoid 1/f = 298.256, $a_e = 6.378136 \times 10^6$ m.

solution	$l \leqslant$	$\bigl\langle (g_{\rm t} - g_{\rm s})^2 \bigr\rangle$	$\langle g_{ m t}g_{ m s} angle$	$\langle g_s^2 angle$	D	$\langle g_{ m t}^2 angle$	$E(\epsilon_{\rm s}^2)$	$E(\epsilon_{ m t}^2)$	$E\delta(g^2)$	$n \ge$	no. of anomalies
SE III	18	191	173	226	235	310	54	18	120	1	1474
	18	146	201	231	235	318	30	15	102	10	1158
	18	142	231	246	235	358	15	15	112	20	757
SE IV.1	18	146	190	216	224	310	26	18	102	1	1474
	18	109	218	227	224	318	9	15	85	10	1158
	18	107	247	242	224	358	-5	15	97	20	757
SE IV.1ex	24	133	214	250	283	310	36	18	79	1	1474
	24	90	242	256	283	318	14	15	61	10	1158
	24	82	275	274	283	358	-1	15	68	20	757
SE IV.2	24	109	221	241	264	310	20	18	71	1	1474
	24	76	245	246	264	318	2	15	59	10	1158
	24	72	277	267	264	358	-9	15	67	20	757
SE IV.3	24	104	222	237	251	310	16	18	71	1	1474
	24	76	244	246	251	318	2	15	59	10	1158
	24	72	277	268	251	358	-9	15	67	20	757

TABLE 5. COMPAR	RISON OF SURFACE	GRAVITY WITH	SOLUTIONS ($(mGal^2)$	
-----------------	------------------	--------------	-------------	------------	--

In table 6, an estimate of the orbital accuracy and its change with each solution is given. One arc is selected from each satellite as a test for each solution. The table lists the standard error of unit weight σ and the number of observations N used in the arc. The data for these arcs, taken from the Earth Physics Satellite Observation Campaign and the Geos 3 programme, were not

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

E. M. GAPOSCHKIN

Table 4. Tesseral-harmomics coefficients, C_{lm} and S_{lm} , for solution SE IV. 3

Note: The coefficients are those of spherical harmonics normalized so that the integral of the square of an harmonic over a unit sphere is 4π .

					S]	phere is 4π .					
l	m	$10^6 C_{lm}$	$10^6 S_{lm}$	l	m	$10^6 C_{lm}$	$10^6 S_{lm}$	l	m	$10^6 C_{lm}$	$10^6 S_{lm}$
2	2	2.41850	-1.42170	19	3	-0.00389	-0.02580	9	7	-0.19141	-0.08405
3	3	0.66522	1.48860	19	6	0.03889	0.05414	10	1	0.07963	-0.07113
4	3	1.00450	-0.19285	19	9	-0.04461	0.00116	10	4	-0.01031	-0.12082
5	2	0.61230	-0.33841	19	12	0.01314	0.00990	10	7	0.04185	0.00801
5	5	0.09713	-0.57910	19	15	-0.01208	-0.02020	10	10	0.10663	0.00754
6	3	-0.00376	0.05841	19	18	0.05479	0.00722	11	3	-0.03543	-0.22653
6	6	0.01281	-0.27466	20	2	0.00450	0.01545	11	6	-0.00616	-0.00118
7	3	0.24411	-0.24812	20	5	-0.00880	0.01412	11	9	0.00755	0.12648
7	6	-0.27061	0.15350	20	8	-0.00070	0.05417	12	1	-0.07135	-0.04250
8	2	0.08150	0.00983	20	11	0.03074	-0.01572	12	4	-0.09396	-0.06455
8	5	0.03689	0.00195	20	14	0.01732	-0.02665	12	7	-0.09239	0.02294
8	8	-0.17931	0.10295	20	17	-0.00615	-0.01765	12	10	-0.01589	-0.00949
9	3	-0.18900	-0.05918	20	20	0.00259	-0.00981	13	1	-0.05227	-0.01785
9	6	0.05800	0.19442	21	3	-0.00959	0.01764	13	4	0.01011	0.04026
9	9	-0.00254	0.04101	21	6	-0.00016	0.00556	13	7	0.02348	0.07551
10	3	-0.07161	-0.06977	21	9	-0.02278	0.02433	13	10	0.01766	-0.02996
10	6	-0.02410	-0.10872	21	12	0.01513	-0.00214	13	13	-0.04858	0.08088
10	9	0.08490	-0.01824	21	15	0.00974	0.00301	14	3	0.03016	-0.02494
11	2	-0.07709	-0.07450	21	18	0.03111	0.00854	14	6	0.01341	0.04053
11	5	0.00597	0.00742	21	21	0.00524	-0.00162	14	9	0.01602	0.10555
11	8	0.05583	0.02720	22	3	0.02292	0.00780	14	12	0.00273	-0.01985
11	11	0.09096	-0.01344	22	6	0.00815	-0.02002	15	1	0.04541	$0.02027 \\ 0.04118$
12	3	0.06967	0.11387	22	9	0.02241	0.01681	15 15	4 7	$-0.03462\ 0.10339$	0.04118 0.09337
12	6	0.01362	0.01897	22	12	-0.02693	0.00391	15	10	-0.06956	0.00901
12	9	-0.03408	0.06251	22	15	0.02335	0.00398	15 15	10	-0.00950	0.00308
12	12	0.01389	0.01817	22	18	0.02260 - 0.02825	$-0.00276 \\ 0.02853$	15 16	13	-0.00009 0.01616	0.00503 0.05647
13	3	-0.03670	0.06864	22	21	-0.02825 0.00133	-0.02053	16	1 4	0.05737	0.04996
13	6	-0.07322	0.02257	23	$\frac{2}{5}$	0.03222	-0.02053 0.00620	10	4 7	-0.02372	-0.04542
$\begin{array}{c} 13\\ 13\end{array}$	$9 \\ 12$	0.00520	$0.03576 \\ 0.10403$	23 23	9 8	0.03222 0.00694	0.00243	16	10	0.01630	-0.04265
		-0.01797		23 23	8 11	-0.00574	0.00243 0.01711	16	13	0.00336	-0.00943
14 14	$rac{2}{5}$	-0.02871	-0.00347 - 0.02613	23 23	14	-0.00574 0.01750	-0.02136	16	16	-0.02052	-0.00242
14	8	-0.02149 - 0.04395	-0.02013 -0.04641	$\frac{23}{23}$	17	-0.01571	-0.01680	10	3	0.01160	0.00402
14	11	-0.04393 0.00717	-0.05827	23 23	20	-0.00400	-0.00033	17	6	-0.03366	-0.04151
14	14	-0.05630	-0.00322	23 23	$\frac{20}{23}$	-0.01048	-0.01981	17	9	-0.04467	-0.06275
14	3	-0.05030 0.05344	-0.00322 0.03729	$\frac{23}{24}$	$\frac{23}{3}$	-0.01040	-0.01285	17	12	0.02902	0.01431
15	6	-0.00988	-0.07868	$\frac{24}{24}$	6	-0.00684	-0.00238	17	$15^{}$	0.02580	0.02138
15	9	-0.01462	0.02599	21	9	-0.04896	-0.00946	18	1	-0.01264	-0.03310
15	12	-0.00950	0.02000 0.03440	$\frac{21}{24}$	12	0.02427	-0.01869	18	4	0.05267	0.01406
15	15	-0.03348	0.03635	24	15	0.00597	-0.00762	18	7	0.02064	-0.02277
16	3	-0.03314	-0.00495	24	18	0.00909	0.00021	18	10	0.03372	-0.01729
16	6	0.00634	-0.03827	$\frac{1}{24}$	$\overline{21}$	-0.01030	0.02316	18	13	-0.01080	-0.04457
16	9	0.02029	-0.04059	24	24	0.00821	-0.00973	18	16	0.01519	0.00127
16	12	-0.01034	0.00709	27	13	0.01536	-0.03544	19	1	-0.02178	0.01663
16	15	-0.01652	-0.05836	3	1	2.04910	0.27700	19	4	-0.00193	-0.03373
17	2	-0.02454	0.02305	4	1	-0.58428	-0.46844	19	7	-0.01290	-0.01412
17	5	-0.03944	0.02060	4	4	-0.09033	0.27706	19	10	-0.03573	-0.01619
17	8	0.04479	-0.03289	5	3	-0.58737	-0.05459	19	13	0.01701	-0.00502
17	11	0.07356	0.04451	6	1	-0.07823	0.01839	19		-0.02254	-0.01492
17	14	-0.01373	0.01322	6	4	-0.04001	-0.37027	19		-0.02174	0.00660
17	17	-0.06590	-0.00144	7	1	0.26053	0.06631	20		0.01323	0.00436
18	3	-0.02590	0.00726	7	4	-0.14505	-0.17486	20		0.02501	-0.02063
18	6	-0.02321	-0.03044	7	7	$0 \ 04432$	-0.09185	20		0.08565	-0.01039
18	9	0.03822	0.01641	8	3	-0.04088	-0.02498	20		-0.05473	-0.03269
18	12	-0.05544	-0.01729	8	6	-0.12014	0.21447	20		-0.01100	-0.01564
18	15	-0.04883	-0.00401	9	1	0.17280	-0.02036	20		-0.00306	-0.02031
18	18	-0.00454	-0.00329	9	4	-0.08453	0.04620	21	1	-0.00388	0.03466

TABLE 4 (cont.)

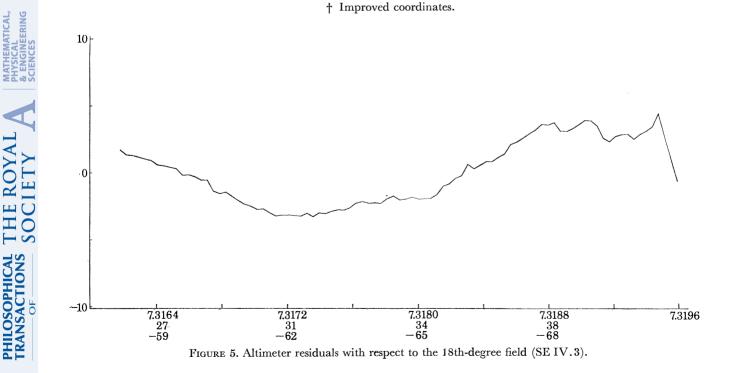
								/				
	l	m	$10^6 C_{lm}$	$10^6 S_{lm}$	l	m	$10^6 C_{lm}$	$10^6 S_{lm}$	l	m	$10^6 C_{lm}$	$10^6 S_{lm}$
U	21	4	-0.01577	0.03553	9	8	0.22047	-0.01327	19	5	-0.02442	-0.01754
ERING	21	7	-0.03586	-0.01373	10	2	-0.06514	0.00802	19	8	0.04724	-0.01829
νЩΓ	21	10	-0.00845	-0.03219	10	5	-0.01777	0.02161	19	11	0.01822	0.06430
	21	13	0.02005	0.03340	10	8	0.05510	-0.09175	19	14	-0.00317	-0.00436
E E E	21	16	0.00743	-0.01346	11	1	-0.00328	0.01680	19	17	0.06154	-0.01856
r and n	21	19	-0.05060	0.00289	11	4	-0.09886	-0.10843	20	1	-0.00850	-0.03348
	$22^{}$	1	0.01214	0.00347	11	7	0.05265	-0.03807	20	4	-0.00762	-0.03487
	22	4	0.01749	-0.00572	11	10	-0.05558	0.02544	20	7	-0.01581	0.01790
	${22}$	7	0.00273	0.05570	12	2	0.03148	-0.02717	20	10	-0.01207	0.00744
	$\frac{-}{22}$	10	0.00193	0.04487	12	$\overline{5}$	0.04100	0.03248	20	13	0.04112	0.02014
	$\frac{-}{22}$	13	-0.02258	0.00066	12	8	-0.00777	0.05503	20	16	0.00069	0.00394
	$\frac{-}{22}$	16	-0.01334	-0.00055	12	11	-0.00282	0.01727	20	19	-0.00444	0.00110
	$\frac{-}{22}$	19	0.03157	0.00076	13	2	0.00795	-0.05381	21	2	0.01227	-0.01142
ш	$\frac{-}{22}$	$\overline{22}$	-0.00984	-0.00140	13	$\overline{5}$	0.11180	0.04126	21	5	0.03139	-0.04049
	$\frac{-}{23}$	3	-0.01591	-0.02863	13	8	0.00567	-0.04582	$\frac{1}{21}$	8	0.02815	-0.00081
	23	6	-0.03038	0.03683	13	11	-0.04234	0.04537	21	11	0.00533	-0.03548
	23	9	0.01674	0.01326	14	1	0.01457	0.02307	21^{-1}	14	0.00954	0.01405
S	23	12	0.01647	-0.00543	14	4	0.01208	-0.05915	21	17	0.00339	0.01443
0	23	15	0.01484	0.00256	14	$\overline{7}$	0.00115	-0.09597	21^{-1}	20	-0.02022	0.03386
ž	23	18	0.01278	-0.00907	14	10	0.03359	-0.04565	22	2	-0.01173	0.01705
0	23	21	0.01946	-0.00221	14	13	0.03265	0.04509	$22^{}$	$\overline{5}$	-0.03021	0.03688
F	24	1	-0.01376	0.00549	15	2	0.00604	-0.03512	${22}$	8	-0.03771	0.00126
	24	4	-0.00746	0.02529	15	$\overline{5}$	0.04412	0.02846	22	11	0.00569	-0.02600
S V	$\frac{21}{24}$	7	0.00967	-0.00726	$15 \\ 15$	8	-0.01663	0.03337	22	14	-0.00082	0.00665
Z	24	10	0.03325	0.01903	15	11	0.03335	0.02008	22	17	0.02599	-0.03734
2	$\frac{21}{24}$	13	-0.01173	-0.00559	15	14	0.00482	-0.03382	22	20	-0.00612	0.01411
F	24	16	0.00770	0.00635	16	2	-0.01190	-0.00320	23	1	0.00600	0.03368
	$\frac{21}{24}$	19	-0.03158	0.00447	16	$\overline{5}$	-0.01876	0.00518	23	$\overline{4}$	-0.00764	0.01446
	24	$\frac{10}{22}$	-0.00316	-0.01505	16	8	-0.05528	0.04268	23	7	-0.00899	-0.01315
	$\frac{21}{25}$	13	0.01139	0.00318	16	11	0.00003	-0.02050	23	10	0.00325	-0.00257
	27	14	0.01717	-0.05403	16	14	-0.02010	-0.03331	23	13	0.01279	0.00645
	- 3	2	0.91763	-0.68102	17	1	-0.03409	-0.04676	23	16	0.02042	-0.00949
	4	$\overline{2}$	0.35756	0.63501	17	4	-0.06372	0.03890	23	19^{-10}	-0.00031	0.00984
U	5	1	-0.08500	-0.11014	17	7	0.04450	0.01072	23	22	-0.01419	0.01793
ERING	5	4	-0.28573	0.00526	17	10	0.00247	0.02897	24^{-2}	2	-0.00301	0.01632
ы Ш.	6	$\hat{2}$	0.08701	-0.43707	17	13	0.02055	0.04389	24	5	-0.03199	-0.01342
SZÜ	6	$\overline{5}$	-0.28476	-0.46418	17	16	-0.04377	0.01812	$\overline{24}$	8	0.01602	-0.02357
	7	2	0.27311	0.13678	18	2	-0.01735	0.01829	$24^{$	11	0.01333	0.03002
r a C	.7	$\tilde{5}$	0.02508	0.03487	18	$\overline{5}$	0.02412	-0.01093	$\frac{1}{24}$		-0.04424	0.02837
	8	1	0.00865	0.02621	18	8	-0.00724	0.01531	24		-0.01959	-0.00238
	8	4	-0.17405	0.07901	18	11	-0.05602	-0.00013	24		-0.01070	0.01233
	8	$\frac{1}{7}$	0.08145	0.11022	18	14	0.00061	-0.02720	21		0.00734	-0.01200
	9	2	-0.01486	-0.07874	18	17	0.01243	-0.00594	21		-0.02210	0.02149
	9	$\frac{2}{5}$	-0.12391	-0.00321	19	2	0.02950	0.00001 0.01465	20	**	0.02210	0.0110
1	9	0			10	-	0.04000	0.01100				

THE ROYAL A MATHEMATICAL, PHILOSOPHICAL PHILOSOPHICAL

523

IEMATICAL

524


E. M. GAPOSCHKIN

used in the computation of SE III. The test arcs for Starlette (7501001) and Geos 3 (7502701) were changed for the third iteration. The particularly large initial uncertainty for Starlette and Geos 3 is largely due to some specific resonance terms; once these were identified, the uncertainties came down to a reasonable level. Peole (7010901) is used as the ultimate test for a gravity field; because of its low altitude and low inclination, it supplies relatively few data and the orbits are not so accurate. We continue to believe that it does give a positive contribution to our knowledge of the geopotential.

Satellite-to-sea-surface altimeter data provide a combined test of the ephemeris accuracy and the geopotential. Figure 5 is a plot of the absolute residuals for one track of Geos 3 altimetry data. The satellite ephemeris is computed from laser tracking data, and the geoid is defined with this solution truncated at 18th degree and order. The residuals are consistent with an orbital accuracy of 5 m, a geoid accuracy of 3 m, and an altimeter accuracy of better than 1 m.

TABLE 6. COMPARISON OF SOLUTIONS (STANDARD ERROR OF UNIT WEIGHT AND NUMBER OF OBSERVATIONS)

	solution	no. of arcs in solution	l_{\max}	$\langle (g_t - $	face grave $(g_s)^2$ (m n > 10	Gal ²)		~ 1	σ BI	E-C N	\int_{σ}^{Ge}	os 2 N	\int_{σ}^{Sta}	rlette N	$rac{Pec}{\sigma}$	ole N	$\int \frac{\mathrm{Ge}}{\sigma}$	os 3 N
0							GM =	3.9860	013×1	0^{20} cm^3	s ⁻²							
	SE III SE IV.1 SE IV.2	$\begin{array}{c} 203\\ 52\\ 52\end{array}$	18 18 24	$191 \\ 146 \\ 109$	146 109 76	$142 \\ 107 \\ 72$	$4.53 \\ 3.72 \\ 3.66$	3021 3022 3023	$5.81 \\ 4.52 \\ 3.86$	$1699 \\ 1695 \\ 1689$	$5.58 \\ 3.13 \\ 3.01$	$1112 \\ 1122 \\ 1124$		$2443 \\ 2258 \\ 2274$	$15.41 \\ 11.38 \\ 12.56$	$805 \\ 794 \\ 814$	13.16 11.37 7.24	$1076 \\ 1078 \\ 1065$
							GM =	3.986	005×1	0^{20} cm^3	s ⁻²							
	SE IV.2 SE IV.3	52 71	$\begin{array}{c} 24 \\ 24 \end{array}$	109 127	76 95	72 90	$4.59 \\ 4.18$	3053 3028	$\begin{array}{c} 4.97\\ 3.48\end{array}$	$\begin{array}{c} 1701\\ 1645 \end{array}$	$\begin{array}{c} 3.51\\ 3.95\end{array}$	$\begin{array}{c} 1132\\ 1147 \end{array}$	$\begin{array}{c} 6.50 \\ 5.85 \end{array}$	$\begin{array}{c} 1645\\ 1643 \end{array}$	$\begin{array}{c} 11.55\\ 10.78 \end{array}$	811 509	$\begin{array}{c} 11.31\\ 10.33\end{array}$	$\begin{array}{c} 1770\\ 1769 \end{array}$

4. STATION-COORDINATE DETERMINATION

The station coordinates were determined in parallel in this third iteration. Laser range measurements are invariant under translation and rotation of the reference system, and so we have no obvious relation to a defined system. The satellite theory with $C_{21} = S_{21} = J_1 = 0$ is referred to the Earth's centre of mass and the Conventional International Origin through observations of pole position. Therefore, if temporal variations such as tides are properly modelled, centre-of-mass coordinates should be realized. However, the longitude origin will be arbitrary. We then look to observations from camera and deep-space probes to provide this orientation. An individual station position in a geometrical network, such as the Baker-Nunn (Gaposchkin 1974) or the BC-4 (Schmid 1974), may not approach 1 m; however, the mean system could provide orientation to that accuracy (Gaposchkin 1974; Mueller 1974). We therefore combine the geometrical network in such a way that the relative positions of the laser stations are preserved and the orientation of the resulting system is the FK4 system defined by U.T.1 and by pole-position values determined by the Bureau International de l'Heure. Ultimately, the orientation in longitude could come from the DSN coordinates, which could be related to the FK4 system with greater accuracy through the use of planetary ephemerides. We have included the data from the DSN allowing for such a rotation. Table 7 gives the adjusted coordinates for all the stations.

The combination solution provides for orientation differences and for a scale difference for the DSN, both of which are consistent with the results in SE III. The scale difference for the DSN is due to the change of length scale defined by the adopted value of GM (table 1).

Tests of station coordinates include (1) a comparison of orbital residuals and (2) a comparison of ellipsoid heights.

The orbital residuals are given in table 6. The orbital accuracy is consistent with a 3-5 m accuracy in the station coordinates.

The height above the ellipsoid for a station can be estimated by summing the mean sea-level height h_{msl} and the geoid height N and can be compared with the ellipsoid height (h_e) determined from the geocentric coordinates. The error Δh is

$$\Delta h = h_{\rm e} - h_{\rm msl} - N.$$

We can obtain N from the spherical-harmonics coefficients in table 4. The mean change Δh is, of course, a change in the semidiameter of the reference ellipsoid, a_e , whose revised value,

$$a_{\rm e} = (6.378136 \pm 1) \,{\rm Mm},$$

obtained from a weighted mean of all 114 stations, is consistent with the change in GM of 2 parts per 3 million.

5. Discussion

The most obvious result from the new laser data is the increased capability for determining the long-wavelength features of the Earth's gravity field. The desired signal (5-10 m) is far above the noise in the data (5-10 cm). Some coefficients of the gravity field must be determined from terrestrial gravimetry, but these will soon be derived by satellite-altimeter data and satellite-to-satellite tracking data. Significant improvement still remains to be obtained from the laser data now in hand and currently being acquired. However, important geophysical phenomena must also be modelled and determined. For example, the effects of solid-earth, ocean, and atmospheric

(Facing p. 524)

MATHEMATICAL, PHYSICAL & ENGINEERING

TRANSACTIONS CONTENT

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & BIGINEERING OF SOCIETY SCIENCES

PHILOSOPHICAL THE ROYAL A MATHEMATICAL, TRANSACTIONS SOCIETY & ENGINEERING OF SCIENCES

TABLE 7. CORRECTED STATION COORDINATES FOR SE. VI. 3

monitive in the direction de inner لي ال rith Y in the meridia oln loinia f V and V lie in the Ę 4 ÷ . N ۵ 2 Mata

location	IOCALIOII	Easter Is., Chile Tutuila. Am. Samoa	Thursday Is., Australia	Invercargill, New Zealand	Caversham, Australia	Revilla Gigedo, Mexico	Pitcairn Is., U.K.	Cocos Is., Australia	Addis Ababa, Ethiopia	Cerro Sombrero, Chile	Heard Is., Australia	Mauritius, U.K.	Zamboanga, Philippines	Palmer Sta., Antarctic	Mawson Sta., Antarctic	Wilkes Sta., Antarctic	McMurdo Sta., Antarctic	Ascension Is., U.K.	Christmas Is., U.K.	Culgoora, Australia	So. Georgia, U.K.	Daker, Senegal	Fort Lamy, Chad	Hohenpeissenberg, W. Germany	Natal, Brazil	ohannesburg, Rep. S. Afr.	Fristan Da Cunha, U.K.	Chiang Mai, Thailand	Chagos, Archipelago	Seychelles, U.K.	New Hebrides, U.K.	Wrightwood, U.S.A.	Point Barrow, U.S.A.	Wrightwood, U.S.A.	Edinburg, U.S.A.
c			•		-		•••	-		Ŭ	• •	-		_	-	•		1	-	-			-		F1	د.		-	Ţ		,	ſ	-	-	
alm) 12.2 3 8.6					13.5	2 8.5			Η			1													Τ		7.8	L 7.7	2 16.6	1 2.2	3 10.4		6.6
N	٩	-2.8957500 -1.5685863	-1.1638574	-4.5972716	-3.3453999	2.0353602	-2.6860880	-1.3385572	0.9663253	-5.0559454	-5.0718735	-2.1918063	0.7636181	-5.7470533	-5.8743464	-5.8165640	-6.2132898	-0.8786171	0.2216717	-3.2001674	-5.1552594	1.6128467	1.3317224	4.7027644	-0.6542927	-2.7680996	-3.8231669	2.0393000	-0.8107375	-0.5159534	-1.9259372	3.5827501	6.0195916	3.5824449	2.8168006
0° m. V	T	-5.3548751 -0.9973364	3.8422645	0.8913557	4.8755656	-5.6426966	-4.4212135	6.1908067	3.9682566	-3.6147475	3.6846448	5.0453464	5.3658236	-2.4509935	2.1692761	2.4095468	0.3112806	-1.5717290	-2.4483506	2.7920850	-2.2193572	-1.8534765	1.6179516	0.8208526	-3.6539246	2.6703491	-1.0868595	5.9674633	6.0322890	5.2382481	1.2319329	-4.6679697	-0.8124140	-4.6680601	-5.6574332
The units of X, Y and Z are 10^{6} m. station X	4	-1.8885957 -6.0999533	-4.9553563	-4.3138011	-2.3753830	-2.1609729	-3.7247516	-0.7419540	4.9007581	1.3713891	1.0989150	3.2234456	-3.3619323	1.1926919	1.1113520	-0.9025774	-1.3108226	6.1183440	-5.8853314	-4.7516240	2.9999343	5.8844814	6.0234014	4.2135809	5.1864102	5.0848501	4.9784433	-0.9416778	1.9051513	3.6028323	-5.9523058	-2.4488455	-1.8817858	-2.4488994	-0.8284805
its of X, J station	TONTINIT	6020	6023	6031	6032	6038	6039	6040	6042	6043	6044	6045	6047	6050	6051	6052	6053	6055	6059	6060	6061	6063	6064	6065	6067	6068	6069	6072	6073	6075	6078	6111	6123	6134	7036
of the North Pole. The uni location	IOCALIOII	Blossom Point, U.S.A. Ft. Mvers. 11.S.A.	Goldstone, U.S.A.	East Grand Fork. U.S.A.	Rosman, U.S.A.	Uzhgorod, U.S.S.R.	Zvenigorod, U.S.S.R.	Riga, Latvia	Baja, Hungary	Bucharest, Rumania	Ondrejov, Czechoslavakia	Potsdam, G.D.R.	Helwan, Egypt	California J.P.L., U.S.A.	California J.P.L., U.S.A.	California J.P.L., U.S.A.	Australia J.P.L.	Australia J.P.L.	So. Africa J.P.L.	Spain J.P.L.	Spain J.P.L.	Thule, Greenland	Beltsville, U.S.A.	Moses Lake, U.S.A.	Shemya, U.S.A.	Tromso, Norway	Azores, Portugal	Paramaribo, Netherland	Quito, Ecuador	Maui, U.S.A.	Wake Is., U.S.A.	Kanoya, Japan	Mashhad, Iran	Catania, Italy	Villa Dolores, Argentina
	<u>م</u> /111	2.2	6.1	6.3	4.3	7.8	23.9	7.9	12.8	64.9	9.9	31.5	16.5	2.4	2.4	2.4	5.7	6.5	3.3	3.8	3.8	6.8	2.2	4.5	12.0	8.0	7.7	8.1	9.4	7.7	9.3	10.0	6.8	6.7	5.5
N	4	3.9429737 2.8334964	3.6683199	4.7187462	3.6567070	4.7639259	5.2459136	5.3228066	4.5793082			•		3.6737634	3.6656283	3.6770517	-3.3021942	-3.6745997	-2.7687110	4.1148628	4.1168859	6.1802327	3.9947011	4.6560322	5.0513396	5.9581750	3.9716442	0.6015282	-0.0108140	2.2422174	2.0937977	3.3034157	3.7503106	3.8566635	-3.3554179
Δ	T	-4.8763121 -5.6519616	-4.6463134	-4.2420613	-5.1779169	1.6024471	2.1559923	1.4214952	1.4376943	2.0077459	1.0510658	0.8819794	2.8796833	-4.6450713	-4.6519707	-4.6413339	3.7248595	2.6824262	2.6682510	-0.3602940	-0.3702118	-1.3899725	-4.8308268	-3.7858447	0.3964309	0.7216929	-2.2681269	-5.2142244	-6.2509404	-2.4044070	1.3945249	4.1207355	4.4441756	1.3161948	-4.9145431
X	V	1.1180419 0 8078777	-2.3572308		0.6475288	3.9073919	2.8862402	3.1838714	4.1842393	4.0986239	3.9784445	3.8006249	4.7282961	-2.3514438	-2.3504573	-2.3536360	-3.9787053	-4.4609688	5.0854485	4.8492410	4.8466986	0.5465824	1.1307801	-2.1278215	-3.8517740	2.1029456	4.4336553	3.6232539	1.2808525	-5.4660225	-5.8585389	-3.5658560	2.6043682	4.8964065	2.2806410
station	number	1021	1030	1034	1042	1055	1072	1084	1113	1131	1147	1181	1901	4711	4712	4714	4741	4742	4751	4761	4762	6001	6002	6003	6004	6006	6007	6008	6009	6011	6012	6013	6015	6016	6019

E. M. GAPOSCHKIN

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES	
THE ROYAL A SOCIETY	
SACTIONS - OF	

PHILOSO **FRANSAC**

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS CONTENT

SOCIETY

- 0F

TABLE 7 (cont.)

Comodoro Rivadavia, Argentina Olifantsfontein, Rep. S. Afr. Olifantsfontein, Rep. S. Afr. Island Lagoon, Australia Villa Dolores, Argentina -4.4077857 155.3 Mt. John, New Zealand Agassiz Station, U.S.A. Addis Ababa, Ethiopa Mt. Hopkins, U.S.A. San Fernando, Spain Johnston Is., U.S.A. Organ Pass, U.S.A. Cold Lake, Canada Rosamond, U.S.A. Harestua, Norway Curacao, Antilles Uppsala, Sweden Naini Tal, India Dionysos, Greece Helsinki, Finland Dionysos, Greece location Dodaira, Japan Arequipa, Peru Arequipa, Peru Jupiter, U.S.A. Tokyo, Japan Maui, U.S.A. Natal, Brazil Shiraz, Iran Natal, Brazil 14.85.52.05.82.02.4 15.04.4 2.2 16.412.36.62.010.46.011.417.65.12.010.4 2.05.62.4 17.4 19.33.97.7 4.4 σ/m 8.1 3.10963863.13625393.72920945.50952725.51270233.4010382-2.77577323.76966023.6988226-1.79692421.3271534-3.35539893.3319092-2.7757719-3.3030140-1.7969025-0.65432983.9126133-4.5566375-0.65432954.28731865.49299213.91265003.63503225.18543801.82573802.88023132.24218140.9638629N -5.16698952.71651624.4040025-5.8169047-5.6013809-4.9145802-2.4042880-5.07770653.7251093 -5.80409293.9652236-3.6538632-4.1123622-0.55522543.3662984-5.80408622.71652692.03946850.97016161.3421456 2.03948655.47114043.3763601 -3.6538424-4.4674841-4.6244151-3.46687900.5926507-1.11187710.7616188-1.53574412.2518325-3.97776961.94277655.18645445.18646455.10559423.94669651.94278163.3768934 0.9763053 2.2805892-5.4660720-1.93678235.0561223-3.91044014.90375044.5952057 1.69381211.4897634 2.88453163.12128155.05612831.01819653.06004274.5951587 2.4500047-1.2648254-6.0074164-4.5336624× number station 9001 900290049005 9006 9007 9008 6006 $9010 \\ 9011$ 90129021 $9022 \\ 9023$ 902590279028902990309039 9050 906490769091 9113 91149115 9117 9119 9031 Olifantsfontein, Rep. S. Afr. Sudbury, Ontario, Canada Zimmerwald, Switzerland Haute Provence, France Haute Provence, France Haute Provence, France San Juan, Puerto Rico San Fernando, Spain Mt. Hopkins, U.S.A. Ypburg, Netherland San Diego, U.S.A. Kingston, Jamaica Greenbelt, U.S.A. 3.9 Columbia, U.S.A. Greenbelt, U.S.A. Greenbelt, U.S.A. Grand Canary Is. Dionysos, Greece Dionysos, Greece Denver, U.S.A. Quincy, U.S.A. Jupiter, U.S.A. Arequipa, Peru Guam, U.S.A. location Grasse, France Malvern, U.K. Nice, France Grand Turk Natal, Brazil Bermuda Bermuda 5.02.02.02.05.010.42.36.51.4587745 13.9 5.16.73.94.65.52.02.02.02.4 4.4 4.4 5.15.27.0 5.15.38.3 5.11.9855153 10.1 5.75.13.99410184.60049984.40316463.98326304.04899403.99408482.31891492.88023881.9665265 4.0764075 3.76962894.38931983.33191443.99414473.4172727-1.79692434.40314263.3936237 2.96125660.65432993.91260343.91260343.3945837-2.77577324.63310815.01273154.40318644.38641255.0058873 N -4.9672788-5.5348833-4.8313144-4.83136433.5840978-4.8313748-5.6194852-4.3470684-4.1988374-0.55524770.4579879-1.50167500.5562044-5.8040866-5.0777035-3.65386342.03946872.03946840.45798110.13472150.45799680.5866255 -4.8735837-4.7602301-4.7997481-4.8740827-5.6013787-5.90563010.56754370.29885862.7165161-0.19127561.1307075 -1.2404649-5.06895102.30853881.9204830 0.97629025.10561434.58168124.5952146 2.30823881.1307228 -2.42884330.69264391.3841912 2.51690804.5783427 5.44048305.05612811.9427817 -1.93678125.18645464.59521464.57836524.3312983 3.92015482.46506871.13068544.57832204.5794767 3.9196517number station 70637076 7080 7804 7819 7037704070437045 7050 70607068 7072 7075 7809 7842 7902 7907 7921 7929 7930 8009 8010 7039 79408015 8019 7061 7067 8011 8034

GRAVITY-FIELD DETERMINATION

526

E. M. GAPOSCHKIN

tides on both the gravity field and the station positions will be derived. Currently, preliminary analyses and nominal values are being employed for the reduction of data. The pole position is being monitored by classical and satellite methods now, and eventually it will be known to a few centimetres. Variations in the rotation of the Earth will become important. In addition, relative motions of the stations due to tectonic processes will be modelled and monitored with laser data. A unified coordinate system for a solution like this will provide a framework for such monitoring, although the analysis of the data will probably be done along other lines. Finally, it is an open question what reference frame must be used for analysing these observations, as is discussed in Kolaczek & Weiffenbach (1974).

6. CONCLUSIONS

Laser tracking data of decimetre accuracy can be and have been used to improve our knowledge of station coordinates and of the Earth's gravity field to degree and order 24.

The accuracy of the gravity field and station coordinates allows satellite ephemerides to be computed to better than 10 m.

Considerable more progress is possible. There seems to be no obstacle to obtaining decimetre results for orbital ephemerides and geoid height comparable to the accuracy of laser data.

More geophysical phenomena must be taken into account, and satellite data will become a source of information on tides and other deformations and on tectonic plate motion in the future.

This work was supported in part by Grant NGR 09-015-002 from the National Aeronautics and Space Administration.

REFERENCES (Gaposchkin)

- Aksnes, K. 1976 Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. *Celest. Mech.* 13, 89-104.
- Anderle, R. J. 1974 Transformation of terrestrial survey data to doppler satellite datum. J. geophys. Res. 79, 5319-5331.
- Esposito, P. B. & Ng, A. T. Y. 1975 Geocentric gravitational constant determined from spacecraft radiometric data. Presented at the General Assembly of the International Association of Geodesy, Grenoble, France, August.
- Gaposchkin, E. M. (ed.) 1973 Inithsonian Standard Earth (III). Smithsonian Astrophys. Obs. Spec. Rep. no. 353, 388 pp.

Gaposchkin, E. M. 1974 Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data. J. geophys. Res. 79, 5377-5411.

- Gaposchkin, E. M. 1975 The Smithsonian Standard Earth. Presented at the NASA Earth and Ocean Dynamics Applications Program Modeling Conference, Washington, D. C., November.
- Gaposchkin, E. M., Latimer, J. & Mendes, G. 1975 Station coordinates in the Standard Earth III system and radiation-pressure perturbations from ISAGEX camera data. Presented at the General Assembly of the International Association of Geodesy, Grenoble, France, August.

Gaposchkin, E. M., Latimer, J. & Veis, G. 1973 Determination of station coordinates. In 1973 Smithsonian Standard Earth (III) (ed. E. M. Gaposchkin). Smithsonian Astrophys. Obs. Spec. Rep. no. 353, pp. 309–364.

Gaposchkin, E. M. & Williamson, M. R. 1975 Revision of geodetic parameters. Presented at the General Assembly of the International Association of Geodesy, Grenoble, France, August.

Kaula, W. M. 1966 Tests and combinations of satellite determinations of the gravity fields with gravimetry. J. geophys. Res. 71, 5303-5314.

Kinoshita, H. 1975 Formulas for precession. Smithsonian Astrophys. Obs. Spec. Rep. no. 364, 25 pp.

Kinoshita, H. 1976 Theory of the rotation of the rigid earth. Submitted to Celest. Mech.

Kolaczek, B. & Weiffenbach, G. (eds.) 1974 On reference coordinate systems of Earth dynamics. Proc. IAU Colloq. no. 26. Warsaw: Polish Acad. Sci.

Kozai, Y. 1973 A new method to compute lunisolar perturbations in satellite motions. Smithsonian Astrophys. Obs. Spec. Rep. no. 349, 27 pp.

MATHEMATICAL, PHYSICAL & ENGINEERING

TRANSACTIONS CONTEND

Lautman, D. A. 1976a Perturbations of a close-earth satellite due to sunlight diffusely reflected from the earth. Celest. Mech. (in the press).

Lautman, D. A. 1976 Perturbations of a close-earth satellite due to delayed infrared emission from the earth. To be submitted to Celest. Mech.

Mueller, I. I. 1974 Global satellite triangulation and trilateration results. J. geophys. Res. 79, 5333-5347.

Pearlman, M. R., Lehr, C. G., Lanham, N. W. & Wohn, J. 1975 The Smithsonian satellite ranging laser system. Presented at the General Assembly of the International Association of Geodesy, Grenoble, France, August. Schmid, H. H. 1974 Worldwide geometric satellite triangulation. J. geophys. Res. 79, 5349-5376.

- Smith, D. E., Lerch, F. J., Marsh, J. G., Wagner, C. A., Kolenkiewicz, R. & Khan, M. A. 1975 Contributions to the National Geodetic Satellite Program by Goddard Space Flight Center. J. geophys. Res. 81, 1006–1026.
- Williamson, M. R. & Gaposchkin, E. M. 1973 Estimate of gravity anomalies. In 1973 Smithsonian Standard Earth (III) (ed. E. M. Gaposchkin). Smithsonian Astrophys. Obs. Spec. Rep. no. 353, pp. 193–228.
- Williamson, M. R. & Gaposchkin, E. M. 1975 The estimation of 550 km × 550 km mean gravity anomalies. Smithsonian Astrophys. Obs. Spec. Rep. no. 363, 20 pp.

Discussion

J. A. WEIGHTMAN (Geodetic Office, Elmwood Avenue, Feltham, Middlesex). Since scale from the laser observations fails to correspond with that derived from the adopted value of GM, could not the explanation still lie in the calibration of the laser measures (since theoretical corrections and the measurement of relatively short distances between two terrestrial stations with all the attendant problems of refraction for terrestrial rays and of a reliable terrestrial distance do not really compare with longer field observations in space, where there are no other reliable data for direct comparison)? After all, 1.6 m on the Earth's equatorial radius is a scale difference of only 0.25 part per million.

E. M. GAPOSCHKIN. Calibration of the laser measurements is critical, and considerable attention is given to it (Pearlman *et al.*, these proceedings). Also, systematic errors due to atmospheric refraction and to consequences of satellite design are possible. For early laser data (*ca.* 1971), systematic errors of 1-2 m are very likely. Since then, steady improvements in calibration procedures, system modelling, and component design have achieved the present state of *ca.* 15 cm pass biases. We see no problem, in principle, in making further improvement. These errors are systematic in each pass but vary from pass to pass, and we hope that they average out when taken over many passes. The refraction errors and satellite design errors are certainly less than 10 cm, except for exceptional and infrequent circumstances. Therefore, it is unlikely that scale errors of 1 m are due to calibration problems. More likely are small inconsistencies in the orbit theory used to calculate the satellite ephemeris.

Lautman, D. A. 1976 b Perturbations of a close-earth satellite due to sunlight reflected from the earth. II. Variable albedo. *Celest. Mech.* (in the press).